HukumPertama: setiap benda akan memiliki kecepatan yang konstan kecuali ada gaya yang resultannya tidak nol bekerja pada benda tersebut.[3][4][5] Berarti jika resultan gaya nol, maka pusat massa dari suatu benda tetap diam, atau bergerak dengan kecepatan konstan (tidak mengalami percepatan). Hal ini berlaku jika dilihat dari kerangka acuan PertanyaanJika terjadi tumbukan tidak lenting sama sekali, maka besarnya kecepatan dua buah benda setelah tumbukan V 1 ​ dan V 2 ​ adalah …Jika terjadi tumbukan tidak lenting sama sekali, maka besarnya kecepatan dua buah benda setelah tumbukan dan adalah … AAA. AcfreelanceMaster TeacherJawabanjawaban yang tepat adalah Ajawaban yang tepat adalah A PembahasanPada peristiwa tumbukan tidak lenting sama sekali, sesaat sesudah proses tumbukan, kedua benda yang bertumbukan bergabung menjadi satu sistem dan bergerak bersama-sama atau dengan kata lain kecepatan kedua benda adalah sama. Jadi, jawaban yang tepat adalah APada peristiwa tumbukan tidak lenting sama sekali, sesaat sesudah proses tumbukan, kedua benda yang bertumbukan bergabung menjadi satu sistem dan bergerak bersama-sama atau dengan kata lain kecepatan kedua benda adalah sama. Jadi, jawaban yang tepat adalah A Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!1rb+Yuk, beri rating untuk berterima kasih pada penjawab soal! v2') dalam rumus hukum kekekalan momentum adalah kecepatan benda 2 setelah tumbukan. Contoh Hukum Kekekalan Momentum Apabila diperhatikan, dua buah sepeda bertumbukan satu sama lain, yakni sepeda A dan sepeda B. Sebelum keduanya bertumbukan, kedua sepeda memiliki massa mA dan mB dengan kecepatan vA dan vB. Sebagian dari kalian pasti tahu dong bahwa Indonesia pernah meluncurkan sebuah roket dan mengorbitkan satelitnya di luar angkasa. Dalam prinsip peluncuran roket tersebut, digunakan teori Hukum Kekekalan Momentum, dimana besar momentum yang dihasilkan gaya dorong oleh bahan bakar sama dengan momentum meluncurnya roket. Lalu apa itu hukum kekekalan momentum? Konsep momentum memiliki peranan penting dalam fisika, hukum kekekalan momentum menjelaskan bahwa jika dua buah benda bertumbukan maka besar penurunan momentum pada salah satu benda akan bernilai sama dengan besar peningkatan momentum pada benda lainnya. Ini berarti, total momentum sistem benda sebelum tumbukan selalu sama dengan total momentum sistem benda setelah tumbukan. Secara matematis, hukum kekekalan momentum dapat ditulisakan sebagai berikut m1v1 + m2v2 = m1v1 + m2 v2 keterangan m1 adalah massa benda 1 m2 adalah massa benda 2 v1 adalah kecepatan benda 1 sebelum tumbukan v2 adalah kecepatan benda 2 sebelum tumbukan v1 adalah kecepatan benda 1 setelah tumbukan v2 adalah kecepatan benda 2 setelah tumbukan Hukum kekekalan momentum ternyata berlaku pada semua sistem yang terdiri atas dua benda ataupun lebih yang berinteraksi satu sama lain. Hal ini berlaku selama tidak ada gaya dari luar sistem atau resultan gaya dari luar sistem sama dengan nol. Kendati demikian, hukum ini tidak berlaku pada gerak balok di atas permukaan yang kasar dan pada gerak mobil yang dipercepat atau diperlambat. Baca juga Hukum Perbandingan Tetap Dalam Kimia Sedangkan pada prinsip roket seperti yang dicontohkan diatas, prinsip terdorongnya roket memenuhi hukum kekekalan momentum. Pada keadaan mula-mula sistem dalam hal ini roket dan bahan bakar diam, sehingga momentumnya sama dengan nol. Sesudah gas menyembur keluar dari roket, momentum sistem tetap sehingga momentum sistem sebelum dan sesudah gas keluar adalah sama. Berdasarkan hukum ini. kecepatan akhir yang dapat dicapai sebuah roket bergantung pada banyaknya bahan bakar yang dapat dibawa oleh roket dan kelajuan pancaran gas. Pada dasarnya kedua besaran ini terbatas, sehingga digunakanlah roket-roket bertahap multistage rockets yaitu, beberapa roket yang digabung bersama, begitu bahan bakar tahap pertama telah dibakar habis maka roket ini dilepaskan. Dalam kehidupan sehari-hari, asas gaya dorong roket juga dimanfaatkan oleh cumi-cumi dan gurita. Dimana hewan tersebut bergerak seperti pada roket meneguk air dan mengeluarkannya dengan kecepatan yang tinggi dan memungkinkan untuk bergerak lebih cepat dalam air Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. Related TopicsFisikaHukum Kekekalan MomentumKekekalan MomentumKelas 10MomentumRoket You May Also Like
Koefisienrestituti (e) untuk tumbukan lenting sempurna adalah e = 1. (Persamaan 2) Gabungan persamaan 1 dan 2 : Soal No. 4 Bola merah bermassa 1 kg bergerak ke kanan dengan kelajuan 20 m/s menumbuk bola hijau bermassa 1 kg yang diam di atas lantai. Tentukan kecepatan masing-masing bola setelah tumbukan jika terjadi tumbukan tidak lenting (sama
PANCORAN MAS - 10 latihan soal fisika tentang kekekalan momentum dan perubahan momentum kelas 10 SMA. Pelajaran fisika terkadang menjadi beban bagi para pelajar SMA. Namun, hal tersebut dapat di atasi dengan rajin mengerjakan latihan soal di rumah. Latihan soal fisika ini juga diharapkan membuat pelajar SMA dapat memahaminya. Baca juga 10 Latihan Soal Matematika Kelas 10 SMA Tentang Persamaan Kuadrat, Trigonometri dan Kunci Jawaban Terutama bagi pelajar kelas 10 SMA. Inilah latihan soal tentang kekekalan momentum dan perubahan momentum. Soal 1. Dua bola bermassa 4 kg dan 2 kg bergerak berlawanan arah. Kedua bola kemudian bertumbukan dan setelah tumbukan A dan B berbalik arah dengan kelajuan berturut-turut dan . Kelajuan B sebelum tumbukan adalah .... a. 10 m/s b. 6 m/s c. 4 m/s d. 12 m/s e. 8 m/s 2. Dua bola tanah liat massanya sama masing-masing 2 kg bergerak berlawanan arah. Kecepatan bola pertama 10 ms-1 dan bola kedua 5 ms-1. Setelah tumbukan bola menjadi satu. Kecepatan kedua bola setelah tumbukan adalah .... a. 10 ms-1 searah bola pertama b. 2,5 ms-1 searah bola kedua c. 2,5 ms-1 searah bola pertama d. 5 ms-1 searah bola kedua e. 5 ms-1 searah bola pertama 3. Dua benda bermassa sama bergerak pada satu garis lurus saling mendekati. Jika v2’ adalah kecepatan benda 2 setelah tumbukan ke kanan dengan laju 5 m/s, maka besar kecepatan benda 1 setelah tumbukan v1’ adalah a. 15 m/s
v2 = kecepatan benda 2 sesudah tumbukan. Jenis-jenis Tumbukan. a. Tumbukan lenting sempurna (elastis sempurna) Jadi kecepatan kedua benda setelah tumbukan adalah 1 m/s. balok massa 2 kg meluncur dengan kecepatan 10 m/s spanjang lantai licin danmenumbuk balok lain yang mula-mula diam. Jika tumbukan lenting sempurna, hitunglah
Momentum merupakan besaran yang dimiliki oleh benda yang bergerak. Sedangkan impuls merupakan peristiwa dimana suatu benda yang mengalami pergerakkan dalam selang waktu yang singkat. Sebagai contoh, suatu kejadian tabrakan antar dua kendaraan di jalan raya jika di tinjau dari ilmu fisika, fatal tidaknya suatu tabrakan antar dua kendaraan tersebut di tentukan oleh momentum kendaraan tersebut. Untuk mengetahui lebih jelas tentang momentum, berikut ini penjelasan lengkap tentang momentum dan impul dalam ilmu fisika lengkap dengan contoh dan penjelasaannya. Baca Juga Pengertian Usaha dan Energi dan Penjelasannya Pengertian Momentum dan Impuls Momentum adalah besaran yang dimiliki oleh benda yang bergerak. Besar sebuah momentum tergantung dari massa dan kecepatan dari benda tersebut. Secara matematis, momentum dituliskan sebagai berikut p = mv Keterangan p adalah momentum kg m/s, m adalah massa benda kg v adalah kecepatan benda m/s. Dari rumus diatas, diketahui bahwa momentum sebanding dengan kecepatan benda. Dengan begitu, arah momentum sama dengan arah kecepatannya, semakin besar kecepatan suatu benda maka semakin besar momentumnya. Impuls adalah hasil kali antara gaya rata-rata dan selang waktu gaya bekerja. Secara matematis, impuls di tuliskan sebagai berikut I=FΔt Keterangan I adalah impuls ns, F adalah gaya yang diberikan newton, Δt adalah selang waktu sekon. Baca Juga Pengertian Suhu, Rumus dan Penjelasannya Hubungan Impuls dan Momentum Hubungan antar momentum dan impuls dijelaskan oleh teorema impuls-momentum. Teorema impuls-momentum menyatakan bahwa impuls yang bekerja pada suatu benda sama dengan perubahan momentum dari benda tersebut. Berdasarkan dengan hukum II Newton, menyatakan bahwa gaya F yang diberikan pada suatu benda memiliki besar yang sama dengan perubahan momentum Δp benda persatuan waktu Δt. Secara matematis, hubungan impuls dan perubahan momentum dituliskan I=Δp=p2−p1. Baca Juga Pengertian Jangka Sorong dan Penjelasannya Hukum Kekebalan Momentum Hukum kekebalan momentum menyatakan jika tidak terdapat gaya luar yang bekerja pada sistem, maka momentum benda sebelum dan setelah tumbuhan adalah sama. Hal ini berarti, total momentum system benda sebelum tumbuhan selalu sama dengan total momentum system benda setelah tumbuhan. Secara matematis, hukum kekebalan momentum dirumuskan sebagai berikut m1v1+m2v2=m1v1′+m2v2′ Keterangan m1 adalah massa benda 1 m2 adalah massa benda 2 v1 adalah kecepatan benda 1 sebelum tumbukan v2 adalah kecepatan benda 2 sebelum tumbukan v1’ adalah kecepatan benda 1 setelah tumbukan v2’ adalah kecepatan benda 2 setelah tumbukan Baca Juga Besaran Satuan dalam Pengukuran Fisika Tumbukan Tumbukan dibagi menjadi tiga jenis, yaitu tumbukan lenting sempurna, tumbukan lenting sebagian dan tumbukan tidak lenting sempurna. Untuk mengetahui jenis tumbukan, dapat diketahui dari nilai koefisien restitusinya yaitu nilai negatif dari perbandingan antara besar kecepatn relatif kedua benda setelah tumbukan dan sebelum tumbukan. Secara matematis, nilai koefisien restitusi ditulis sebagai berikut Dengan nilai-nilai koefisien restitusi ketiga jenis tumbukan tersebut adalah Pada tumbukan lenting sempurna, nilai e = 1 Pada tumbukan lenting sebagian, 0 < e < 1 Pada tumbukan tidak lenting sempurna, e = 0 Baca Juga Tumbukan Lenting Sempurna Soal 1. Sebuah bola bermassa 120 gram dilemparkan secara horizontal ke tembok dengan kecepatan 30 m/s dan memantul kembali. Jika bola tersebut dipantulkan dengan laju yang sama besar, maka besar impuls bola yang terjadi adalah… A. 3,6 Ns B. 7,2 Ns C. 10,8 Ns D. 14,4 Ns E. 18 Ns Pembahasan Dari soal, diketahui m = 120 gr = 0,12 kg v1 = 30 m/s v2 = -30 m/s Jadi, impulsnya adalah I = \Delta p I=m. \Delta v = mv2 – v1 I = 0,12 -30 – 30 = 0,12 -60 = -7,2 Ns Tanda minus disini menunjukkan arah, jadi arahnya berbeda dengan arah awalnya karena bolanya memang memantul. Jadi, jawaban yang benar adalah B Soal 2. Sebuah motor dengan pengendaranya bermassa 200 kg melaju dengan kecepatan 40 km/jam dengan percepatan 2 m/s. Perubahan momentum motor tersebut setelah bergerak selama 5 detik adalah… A. 10 kNs B. 1 kNs C. 200 Ns D. 2 Ns E. 2 kNs Pembahasan Dari soal, diketahui m = 2oo kg v1 = 40 km/jam = 11,11 m/s a = 2 m/s t = 5 s Pertama, kita harus cari kelajuannya setelah 5 detik α = Δv/t → Δv = v2–v1 = → v2 = v1 + v2 = + = 21,11 m/s Jadi, perubahan momentumnya bisa didapatkan dengan Δp = I = m. Δv Δp = m v2 – v2 Δp = 200 21, 11 – Δp = = 2kNs Maka, jawaban yang benar adalah E. Untuk perhitungan cepat, kita tidak perlu mencari, tapi dapat langsung mencari perubahan momentumnya dengan Δv. Baca Juga Gerak Harmonik Sederhana dan Penjelasannya Demikian artikel mengenai Momentum & Impuls dengan Penjelasannya. Semoga artikel ini dapat bermanfaat dan menambah wawasan anda mengenai pelajaran Ilmu Pengetahuan Alam.

kecepatanbenda setelah tumbukan adalah . A. 2,0 m/s D. 5,0 m/s B. 2,5 m/s E. 6,0 m/s C. 3,0 m/s 15. Sebutir peluru bermassa 6 gr di tembakan dan bersarang pada ayunan balistik yang massa baloknya 1 kg, menyebabkan balok naik 7 cm dari kedudukan setimbangnya. Jika g = 9,8 m/s2, maka kecepatan peluru yang ditembakan adalah . A. 169 m/s D

Rumus momentum p adalah p = di mana m adalah massa benda dan v adalah kecepatan gerak benda. Halo adik-adik, kalian tahu tidak bagaimana bentuk rumus momentum? Nah, kebetulan nih, materi inilah yang akan kakak jelaskan pada kesempatan kali ini. Momentum merupakan salah satu fenomena yang sering dikaji dalam ilmu fisika. Besaran ini menghubungkan antara massa dan kecepatan gerak sebuah benda. Oh iya, kalian pernah tidak melihat tabarakan kendaraan bermotor? Untuk kalian ketahui, parah atau tidaknya tabrakan itu bisa diketahui melalui teori momentum lho. Selain itu, materi ini juga akan dilengkapi dengan contoh soal yang disertai dengan jawaban pembahasan untuk memandu kalian bagaimana cara menggunakan rumus momentum. Baiklah, kakak mulai saja materinya... Pengertian Momentum Apa yang dimaksud dengan momentum? Dalam ilmu fisika, momentum adalah ukuran kesukaran untuk mendiamkan gerak sebuah benda. Dalam pengertian yang lain, momentum bisa diartikan sebagai kecenderungan benda yang bergerak untuk melanjutkan gerakannya pada kecepatan yang konstan. Oh iya, di atas kakak singgung tentang tabrakan kendaraan, apa sih kaitannya dengan momentum? Begini penjelasannya, benda yang mempunyai momentum yang besar menunjukkan bahwa benda tersebut sulit untuk dihentikan dan akan mempunyai efek merusak yang lebih besar bila menabrak sesuatu. Mobil truk mempunyai massa besar, akan mempunyai efek yang lebih besar bila menabrak tembok dibandingkan sebuah sepeda motor yang massanya lebih kecil meskipun kecepatan kedua jenis kendaraan tersebut sama. Semakin besar massa benda semakin besar pula momentumnya. Bagaimana seandainya jika truk dan motor tersebut bertabrakan? Maka, bisa dipastikan keadaan terparah akan dialami oleh motor karena momentumnya kalah dengan truk. Namun, selain massa, besaran yang juga berpengaruh terhadap momentum adalah kecepatan. Semakin besar kecepatan benda semakin besar pula momentumnya Jadi, ketika terdapat dua truk dengan jenis yang sama saling bertabrakan, maka truk tercepatlah yang memiliki momentum terbesar. Lambang, Satuan, Dimensi Momentum Dalam fisika, momentum dilambangkan dengan p, sengaja ditulis tebal untuk menandakan bahwa besaran ini merupakan besaran vektor. Satuan momentum menurut Sistem Satuan Internasional SI adalah kilogram meter per sekon kg m/s atau newton sekon Ns. Berdasarkan jenis satuannya, momentum termasuk ke dalam besaran turunan, yaitu diturunkan dari besaran pokok massa, panjang, dan waktu. Dimensi momentum dilambang dengan simbol [M][L][T]-1. Hubungan Momentum, Massa, dan Kecepatan Dari ilustrasi di atas, maka bisa kita simpulkan hubungan antara momentum, massa, dan kecepatan. Momentum sebuah benda berbanding lurus dengan massa dan kecepatannya. Semakin besar massa benda semakin besar pula momentumnya. Serta, semakin besar kecepatan benda semakin besar pula momentumnya. Rumus Momentum Momentum suatu benda atau sering disebut momentum linier adalah perkalian massa benda dengan kecepatan benda. Secara matematis, dirumuskan p = m . v Keterangan p = momentum benda kg m/s m = massa benda kg v = kecepatan benda m/s Baca Juga Rumus Lainnya Rumus Gaya Rumus Usaha Hukum Kekekalan Momentum Dalam kajian tentang momentum, ada yang namanya Hukum Kekekalan Momentum. Bagaimana bunyi dari hukum ini? Misalnya, terdapat dua buah bola saling bergerak berlawanan arah dengan kecepatan masing-masing v1 dan v2 dan massa masing-masing m1 dan m2. Benda kemudian bertumbukan, maka hukum kekekalan momentum berbunyi Momentum total sebelum tumbukan sama dengan momentum total setelah tumbukan. Syarat berlakunya hukum kekekalan momentum adalah tidak ada gaya luar yang mempengaruhi sistem. Secara matematis, hukum kekekalan momentum bisa dituliskan dengan rumuspawal = pakhir di mana pawal = + pakhir = + Sehingga + = + Keterangan pawal = momentum sebelum tumbukan kg m/s pakhir = momentum setelah tumbukan kg m/s m1 = massa benda 1 kg v1 = kecepatan benda 1 sebelum tumbukan m/s m2 = massa benda 2 kg v2 = kecepatan benda 2 sebelum tumbukan m/s v1' = kecepatan benda 1 setelah tumbukan m/s v2' = kecepatan benda 2 setelah tumbukan m/s Momentum Tumbukan Tumbukan terbagi menjadi tiga jenis, yaitu tumbukan lenting sempurna, tumbukan lenting sebagian, dan tumbukan tidak lenting. 1. Tumbukan Lenting Sempurna Tumbukan lenting sempurna atau tumbukan elastik adalah tumbukan di mana berlaku hukum kekekalan momentum dan kekekalan energi kinetik. Artinya, energi kinetik tetap sebelum dan sesudah tumbukan. Koefisien restitusi e pada tumbukan lenting sempurna = 1 Soal-soal yang berkaitan dengan tumbukan lenting sempurna, bisa diselesaikan dengan rumus-rumus berikut ini + = + dan v1 - v2 = -v1'- v2' , 2. Tumbukan Lenting Sebagian Pada tumbukan lenting sebagian, energi kinetik benda yang bertumbukan akan berkurang. Sehingga energi kinetik sesudah tumbukan lebih kecil dari energi kinetik sebelum tumbukan. Koefisien restitusi e pada tumbukan lenting sebagian adalah 0 < e < 1. Jadi hukum kekekalan energi kinetik tidak berlaku, yang berlaku hanya hukum kekekalan energi momentum. Soal-soal yang berkaitan dengan tumbukan lenting sempurna, bisa diselesaikan dengan rumus-rumus berikut ini + = + dan Δv' < Δv v1' - v2' < v2 - v1 3. Tumbukan Tidak Lenting Sama Sekali Pada tumbukan tidak lenting sama sekali, setelah tumbukan kedua benda menjadi satu dan bergerak bersama-bersama. Sehingga, pada tumbukan ini hanya berlaku hukum kekekalan momentum, dan tidak berlaku hukum kekekalan energi kinetik. Koefisien restitusi pada tumbukan tidak lenting sama sekali adalah 0. Rumus yang berlaku pada tumbukan tumbukan tidak lenting sama sekali adalah + = m1 + m2.v' v1' = v2' = v' Contoh Soal Momentum Berikut ini kakak tampilkan beberapa contoh soal yang berkaitan dengan momentum Contoh Soal 1 Sebuah benda mempunyai massa 2,5 kg. Hitunglah momentum benda saat kecepatannya 3 m/s? Jawaban Diketahui m = 2,5 kg v = 3 m/s Ditanyakan p...? Penyelesaian = 2,5 kg . 3 m/s = 7,5 kg m/s Jadi, besar momentum benda tersebut adalah 7,5 kg m/s. Contoh Soal 2 Sebuah benda A mempunyai massa 2 kg dan bergerak ke kiri dengan kecepatan 5 m/s. Benda lain B mempunyai massa 4 kg dan bergerak ke kanan dengan kecepatan 2,5 m/s. Hitunglah a. momentum benda A, b. momentum benda B, dan c. momentum total benda A dan B. Jawaban Diketahui mA = 2 kg vA = 5 m/s ke kiri mB = 4 kg vB = 2,5 m/s ke kanan Ditanyakan a. pA b. pB c. ptotal Penyelesaian a. pA = mA . vA = 2 kg . -5 m/s = -10 kg m/s Jadi, momentum benda A adalah -10 kg m/s tanda minus menandakan bahwa momentum A mengarah ke kiri b. pB = mB . vB = 4 kg . 2,5 m/s = 10 kg m/s Jadi, momentum benda B adalah 10 kg m/s ke kanan. c. ptotal = pA + pB = -10 kg m/s + 10 kg m/s = 0 kg m/s Jadi, momentum total antara benda A dan B adalah 0 kg m/s. Contoh Soal 3 Sebuah kereta bermassa 5 kg bergerak searah dengan sumbu x positif dengan kecepatan 3 m/s. Kereta tersebut menumbuk kereta lain bermassa 4 kg yang diam, sehingga kedua kereta tersebut bergabung menjadi satu karena adanya pengait yang dipasang padanya. Hitunglah a. momentum awal sistem b. momentum akhir sistem, dan c. kecepatan akhir kedua kereta Jawaban Diketahui m1 = 5 kg v1 = 3 m/s m2 = 4 kg v2 = 0 m/s Ditanyakan a. pawal b. pakhir b. v' Penyelesaian a. Momentum awal pawal pawal = + = 5 kg . 3 m/s + 4 kg . 0 m/s = 15 kg m/s + 0 kg m/s = 15 kg m/s b. Momentum akhir pakhir Berdasarkan hukum kekekalan momentum, di mana momentum awal sistem sama dengan momentum akhir, maka besarnya momentum akhir adalah 15 kg m/s. c. Kecepatan akhir kedua kereta v' + = m2 + m1 . v' 15 kg m/s = 4 kg + 5 kg . v' v' = 15 kg m/s / 9 kg = 1,67 m/s Jadi, kecepatan akhir kedua kedua kereta adalah 1,67 m/s. Contoh Soal 4 Sebuah peluru bermassa 20 gram ditembakkan dari sebuah senapan bermassa 1,6 kg dengan kelajuan 800 m/s. Hitunglah kecepatan senapan mendorong bahu penembak. Jawaban Diketahui mp = 20 gram = 0,02 kg ms = 1,6 kg vp = 0 m/s vs = 0 m/s vp' = 800 m/s Ditanyakan vs'......? Penyelesaian + = + 0,2 kg . 0 + 1,6 kg . 0 = 1,6 kg . vs' + 0,02 kg . 800 m/s 0 kg m/s = 1,6 kg . vs' + 16 kg m/s -1,6 kg . vs' = 16 kg m/s vs' = 16 kg m/s / -1,6 kg = -10 m/s Jadi, kecepatan senapan mendorong bahu penembak adalah -10 m/s tanda negatif menyatakan bahwa gerak senapan berlawanan arah dengan gerak peluru. Contoh Soal 5 Bola bermassa 150 gram bergerak ke kanan dengan kelajuan 20 m/s menumbuk bola lain bermassa 100 gram yang mula-mula diam. Jika tumbukannya lenting sempurna, berapakah kecepatan masing-masing bola setelah tumbukan? JawabanDiketahuim1 = 150 g = 0,150 kgv1 = 20 m/sm2 = 100 g = 0,100 kgv2 = 0 m/s Ditanyakanv1' dan v2'....? PenyelesaianLangkah pertama, rumus hukum kekekalan momentum + = + 0,150 . v1 + 0,100 . v2 = 0,100 . v2' + 0,150 . v1' 150 . v1 + 100 . v2 = 100 . v2' + 150 . v1' 3v1 + 2v2 = 2v2' + 3v1' 320 + 20 = 2v2' + 3v1' 3v1' + 2v2' = 60....*Langkah keduav1 - v2 = -v1'- v2'20 - 0 = -v1'- v2'-v1'+ v2' = 20....**Langkah ketiga, persamaan ** di kali 3 untuk mengeliminasi v1', sehingga diperoleh3v1' + 2v2' = 60....*-3v1' + 3v2' = 60....persamaan ** setelah dikali 3- + 6v2' = 120v2' = 20 m/s Langkah keempat, masukkan nilai v2' ke persamaan **, sehingga diperoleh-v1'+ v2' = 20-v1'+ 20 = 20-v1' = 20 - 20v1' = -20 + 20v1' = 0 m/s Jadi, setelah tumbukan kecepatan bola 1 v1' dan kecepatan bola 2 v2' adalah 0 dan 20 m/s. Kesimpulan Jadi, Rumus momentum p adalah p = di mana m adalah massa benda dan v adalah kecepatan gerak benda. Gimana adik-adik, udah paham kan cara penggunaan rumus momentum di atas? Jangan bingung lagi yah saat mengerjakan soal. Sekian dulu materi kali ini, bagikan agar teman yang lain bisa membacanya. Terima kasih, semoga bermanfaat. Referensi Arifudin, M. Achya. 2007. Fisika untuk SMA/MA Kelas XI. Jakarta Inter Plus. Esvandiari. 2007. Kumpulan Lengkap Rumus Fisika SMA. Jakarta Puspa Swara.
6 Dua buah benda memiliki massa yang sama yaitu m1 = m2 = 2 kg, bergerak saling mendekati antara kedua nya. Jika v1 = 10 m/s dan v2 = 20 m/s. Jika benda mengalami tumbukan lenting sempurna, maka kesepatan masing-masing benda sesaat setelah tumbukan adalah
Tumbukan sumber ilustrasi Sekolah Fisika Tumbukan, pernahkah Anda mendengar tentangnya? Materi tersebut ternyata ada di pelajaran IPA, khususnya bagian fisika. Dalam ilmu fisika, tumbukan memiliki arti sebuah peristiwa di mana bertemunya dua benda yang bergerak. Materi ini juga berkaitan dengan energi dan hukum kekekalan. Dalam pelajaran tersebut, terdapat beberapa macam tumbukan fisika yang bisa Anda ketahui. Selain itu, ada beberapa soal dari tumbukan yang bisa membantu Anda untuk mengerjakan soal yang serupa. Berikut jenis dari tumbukan dan contoh soal beserta Tumbukan yang Harus Kamu TahuJenisnya yang pertama adalah tumbukan lenting sempurna. Jenis ini tidak akan kehilangan energi kinetik jika terjadi tumbukan. Energi kinetiknya dan momentum akan sama meski sebelum dan sesudah terjadi tumbukan. Rumus dari tumbukan lenting sempurna adalah V1 + V1pangkat 1 = V2 + V2pangkat tumbukan yang kedua adalah tumbukan lenting sebagian di mana akan mengalami kehilangan energi kinetik setelah tumbukan. Rumusnya adalah eV1 + V1 = eV2 + V2. Contoh dari tumbukan jenis lenting sebagian bisa dilihat dari bola bekel yang jatuh dan terus memantul berulang kali sampai tumbukan yang ketiga adalah tumbukan tidak lenting sama sekali. Hal ini terjadi apabila setelah tumbukan, kedua benda memiliki kecepatan yang sama. Alhasil, rumusnya adalah m1V1 + m2V2 = m1+m2V’. Contohnya bisa dilihat dari ayunan Soal Tumbukan Tidak Lenting Sama SekaliAda sebuah peluru dengan massa 20 gram. Kemudian, peluru tersebut ditembakkan pada balok ayunan balistik yang mempunyai massa 1 kilogram. Jika peluru yang tertancap pada balok mencapai tinggi 25 cm, berapakah kecepatan dari peluru mulanya?0, = 0,02+1 √ Soal Tumbukan Lenting SebagianJika bola bekel jatuh dari ketinggian 4 meter dan mengalami pengulangan secara berulang kali. Koefisien restitusinya adalah 0,7, lalu berapa tinggi bola bekel setelah mengalami pemantulan ke-5?= 0,113 meter lalu diubah ke cm menjadi 11,3 cm.ANG Tn4bA.
  • 632j8tmn16.pages.dev/75
  • 632j8tmn16.pages.dev/175
  • 632j8tmn16.pages.dev/281
  • 632j8tmn16.pages.dev/573
  • 632j8tmn16.pages.dev/61
  • 632j8tmn16.pages.dev/425
  • 632j8tmn16.pages.dev/262
  • 632j8tmn16.pages.dev/232
  • jika v2 adalah kecepatan benda 2 setelah tumbukan